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Abstract Novel films consisting of multi-walled carbon
nanotubes (MWCNTs) were fabricated by means of the
chemical vapor deposition technique with decomposition
of either acetonitrile (ACN) or benzene (BZ) in the presence
of ferrocene (FeCp2) which served as catalyst. The electro-
chemical response of the two different kinds of MWCNT-
based films, further referred to as MWCNT-ACN and
MWCNT-BZ, towards the oxidation of dopamine (DA) to
dopamine-o-quinone (DAQ) was tested by means of cyclic
voltammetry, differential pulse voltammetry, and electro-
chemical impedance spectroscopy. Both MWCNT-based
films exhibit quasi-reversible response towards DA/DAQ
with some slight kinetic differences; specifically, the
charge-transfer process was found to be faster on
MWCNT-ACN (ks035.3×10

−3 cm s−1) compared to
MWCNT-BZ (ks06.55×10

−3 cm s−1). The detection limit
of MWCNT-BZ for DA (0.30 μM) appears to be poorer
compared to that of MWCNT-ACN (0.03 μM), but never-
theless, both MWCNT-based films exhibit greater detection
ability compared to other electrodes reported in the litera-
ture. The sensitivities of MWCNT-ACN and MWCNT-BZ
towards DA/DAQ were determined as 0.65 and 0.22
A M−1 cm−2, respectively. The findings suggest that the
fabricated MWCNT-based electrodes can be successfully
applied for the detection of molecules with biological
interest.

Keywords Chemical vapor deposition . Differential pulse
voltammetry . Dopamine . Electrochemical impedance
spectrometry .Multi-walled carbon nanotubes

Introduction

Biosensors constructed at the molecular scale represent the
most exciting application area in nanobiotechnology since
they are extremely sensitive, selective, and reactive [1]. The
nanotechnology-based biosensors are particularly suitable in
the medical diagnostics area since they can be used in order
to replace the more costly and tedious laboratory methods
for checking the patient's blood for proteins, chemicals, and
pathogens. For the development of electrochemical biosen-
sors, multi-walled carbon nanotubes (MWCNTs) are usually
used because of their numerous benefits, namely their high
electrochemically accessible surface area, rich functionali-
zation chemistry, high electrical conductivity, as well as the
very useful mechanical properties. Furthermore, MWCNTs
can be successfully used as non-enzymatic sensors for
selective detection of biomolecules with high sensitivity
and stability [2].

Dopamine or 2-(3,4-dihydroxyphenyl)ethylamin, with
the chemical formula of (OH)2C6H3–CH2–CH2–NH2 (fur-
ther abbreviated as DA) is a member of the catecholamine
family and one of the best known neurotransmitter, which
activates five known types of dopamine receptors (D1–D5)
and their variants [3]. DA was first synthesized by Barger
and Ewens [4], but its function as a neurotransmitter was
initially recognized by Carlsson [5–7], who was awarded the
Nobel Prize in Physiology or Medicine in 2000 for showing
that DA is not just a precursor of norepinephrine and epi-
nephrine but also a neurotransmitter. DA is biosynthesized
through the decarboxylation of 3,4-dihydroxyphenylalanine
(L-DOPA) by the enzyme aromatic-L-amino-acid decarbox-
ylase (L-AADC) [8]. In details, the process of the synthesis
of DA occurs in two main steps: initially L-DOPA is formed
via hydroxylation of the amino acid L-tyrosine in the pres-
ence of the enzyme tyrosine hydroxylase, which is finally
converted to DA via decarboxylation in the presence of the
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enzyme L-AADC. In some neurons, DA is further converted
in the presence of dopamine beta-hydroxylase to norepi-
nephrine, which is transformed to epinephrine by the
enzyme phenylethanolamine N-methyltransferase. DA has
a wide variety of functions in the brain, including important
roles in pleasure, behavior, cognition, controlled movement,
motivation, sleep, mood, attention, working memory, and
learning. In other words DA regulates the flow of informa-
tion and affects the way that the brain controls our move-
ment. It is strongly associated with the pleasure system in
the brain, and its release provides feelings of enjoyment and
supports the activities that provide those feelings. Disorders
in DA levels cause declines in neurocognitive functions like
memory, attention, and problem solving. Furthermore, lack
of DA results in Parkinson's disease and other related dis-
orders. To increase the amount of DA in the brains of
patients with such diseases, the precursor of DA, namely

L-DOPA, is usually given, since DA cannot cross the blood–
brain barrier, and thus, it does not directly affect the central
nervous system [9]. An understanding of the electrochemi-
cal processes of DA would be very useful for the develop-
ment of analytical methods for the diagnosis of some
diseases. It is well known that in clinical medicine, it is
often advantageous to develop an electro-analytical method
for studying electron transfer processes. Numerous studies
of the electrochemical behavior of DA and its analogs, such
as epinephrine, were already reported in the literature
[10–14]. As was already suggested, the oxidation of DA
can be characterized as a two-electron transfer process
which leads to the formation of the corresponding
di-ketone, namely dopamine-o-quinone (further referred to
as DAQ), according to the following reaction:

ð1Þ
Our research activities were currently involved in the

development of MWCNT-based electrodes by means of
the chemical vapor deposition (CVD) technique. We have
actually developed novel and rapid-response sensors based
on carbon nanotube arrays, which are able to detect selec-
tively, down to micromole concentrations, either organome-
tallic compounds or organic molecules [15–18]. In the
present work, we extend our research activity into electro-
chemical studies on biomolecules on MWCNT-based sen-
sors. Specifically, the aim of the research work is the
investigation of the electrochemical response of the novel
fabricated MWCNT-based sensors towards the electro-
oxidation of DA. The obtained results reveal that the novel
MWCNT-based electrodes exhibit rapid response and high
sensitivity towards the DA/DAQ redox couple and,

consequently, open the possibility of using MWCNT as
materials in biomolecule sensing.

Experimental

Reagents

All chemicals were of analytical grade and were used as
received without further purification. Dopamine, (HO)2C6H3–
CH2–CH2–NH2·HCl (>99.0%) was purchased from Aldrich,
while ferrocene, (C5H5)2Fe (>98.0%) was purchased from
Fluka. The aqueous buffer solutions were prepared immediate-
ly prior to the electrochemical experiments by using double-
distilled water having a specific conductivity of 0.1 μS cm−1.
All measurements were carried out at pH07.0 by using phos-
phate buffer solution. Solutions of DA of the desired concen-
tration were prepared daily. The phosphate buffer solution
containing NaCl (8.0 gL−1), KCl (0.2 gL−1), Na2HPO4

(3.26 gL−1), and KH2PO4 (Xg L−1) was set to the wished pH
by varying the X mass of KH2PO4.

Apparatus and procedures

Cyclic voltammograms (CVs) and differential pulse voltam-
mograms (DPVs) were recorded using a computer-
controlled system, Zahner/IM6/6EX, and analyzed by
means of Thales software (version 4.15). The measurements
were carried out using a three-electrode cell configuration.
The working electrode used was either MWCNT-
acetonitrile (ACN) (active surface area, 3.09 cm2) or
MWCNT-benzene (BZ) (active surface area, 1.57 cm2) film,
and the counter electrode was Pt plate (geometric area,
2.0 cm2). All potentials were recorded relative to Ag/AgCl
(KCl sat.) reference electrode, and thus, all potential values
reported in this article are referred to this reference elec-
trode. A three-compartment electrochemical cell designed to
minimize the distances between the electrodes with a total
volume of 20 mL was used for all measurements. Before
each measurement, the measured solution was purged with
high-purity argon to eliminate interference from dissolved
oxygen. The CVs were recorded in the potential range from
−0.4 to 1.0 V (vs. Ag/AgCl) with scan rates (v) ranging from
0.05 to 0.10 Vs−1. DPV curves were recorded in potential
range from 0 to 0.5 V (vs. Ag/AgCl) at the potential scan
rate v00.02 Vs−1. The other DPV parameters were the
following: pulse amplitude, 10 mV; step height, 5 mV; pulse
width, 50 ms; pulse height, 50 mV; time of integration,
50 ms; and settling time, 2 s. All measurements were carried
out at room temperature (21 °C).

Electrochemical impedance spectra (EIS) were recorded
using the computer-controlled system Zahner/IM6/6EX by
applying small ac amplitude (10 mV) in the frequency range
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from 0.1 Hz to 100 kHz at 21 °C. All measurements were
performed on either MWCNT-ACN (3.09 cm2) or
MWCNT-BZ (1.57 cm2) working electrodes against the
reference electrode Ag/AgCl (KCl sat.), while a Pt plate
(2.0 cm2) was served as counter electrode. In all cases, the
EIS were recorded at a potential corresponding to the half-
wave potential (E1/2) of the investigated electro-active com-
pound. The EIS data were analyzed using the Thales soft-
ware (version 4.15).

Scanning electron microscopy (SEM) images of
MWCNT-based films were obtained on FEI/Philips (model
XL30 ESEM) computer-controlled scanning electron micro-
scope with an accelerating voltage of 10 kV and magnifica-
tion factors in the range of ×1,000–×6,000.

Preparation and characterization of MWCNT-based films

Vertically aligned MWCNT were selectively grown on oxi-
dized porous silicon wafer with a geometrical area of 1.0 cm2

in a furnace at 900 °C by means of the catalytic CVD tech-
nique using ferrocene (FeCp2) as catalyst and either ACN or
BZ as carbon source [19]. In detail, a solution of FeCp2 (1%
w/w) in either ACN or BZ was prepared and introduced to the
furnace at the temperature of 900 °C through a syringe with a
flow rate of 0.2 mL min−1. From the decomposition of either
ACN or BZ in the presence of iron particles formed during
pyrolysis, the MWCNT are formed. In order to construct the
MWCNT-working electrode for the electrochemical measure-
ments, the MWCNT-based film produced was connected to a
platinum wire by using silver conducting coating. Once the
silver coating was dried (after 24 h), the silver conducting part
of the electrode was fully covered with varnish protective
coating. The MWCNT-based film was electrochemically
cleaned prior to each use by using a 0.10-mol L−1 solution
of HCl. The scheme of the CVD apparatus and experimental
details concerning this technique were already reported in
previous published articles [20, 21]. The active surface of
the MWCNT-ACN (3.09 cm2) and MWCNT-BZ films
(1.57 cm2) was determined bymeans of CVusing the standard
redox couple [Fe(CN)6]

3−/4−. For the determination of the
electrode active surface, the slope of the linear variation of
the anodic peak current with the square root of the scan rate
(Randles–Sevcik equation) was used [22]. For the estimation,
the diffusion coefficient value of D08.96·10−6 cm2 s−1 was
used for [Fe(CN)6]

3−/4− [23]. It must be mentioned that on
MWCNT-based films, well-defined CV curves of [Fe
(CN)6]

3−/4− were obtained with peak-to-peak potential sepa-
ration equal to that which corresponds to Nernstian one-
electron transfer reaction (ΔEp≈0.059 V) [24]. Furthermore,
the detection limit of MWCNT-based films on [Fe
(CN)6]

3−/4− was determined to be about 0.80 μM, which
was much better compared to that determined on other electro-
des reported in literature [25]. SEM was used for the analysis

of the structure and surface of MWCNT-based films. The
SEM images reveal that the carbon nanotubes are of high
purity and uniform in diameter. Furthermore, the SEM micro-
graphs exhibit that the synthesized MWCNT-ACN and
MWCNT-BZ films are quite homogeneous and possess a
thickness of about 38 and 22 μm, respectively. It is very
interesting that the SEM analysis of the used electrodes after
the end of the experiments reveals some defects in the surface
morphology of the MWCNT-based films. Furthermore, the
SEM images exhibit that a deposition of DA occurs at the
surface of the films (Fig. 1).

Results and discussion

MWCNT-ACN-based film

The electrochemical response of MWCNT-ACN towards the
DA/DAQ redox couple was investigated in phosphate buffer
solution (pH07.0) in the concentration range of 0.035–
0.435 mM. Representative CVs recorded at the scan rate of
v00.05 Vs−1 showing the effect of the change of concentra-
tion are shown in Fig. 2a. The extracted CV parameters are
reported in Table 1. The CVs illustrate that the DA/DAQ
redox couple tends to be reversible with slight kinetic changes
upon variation of the concentration, which can be mostly
attributed to the uncompensated resistance effect. Namely,
during the positive sweep, DA is oxidized to DAQ at the
potential of Ep

ox≈+0.185 V and in the negative sweep is
reduced back to DA at the potential of Ep

red≈+0.121 V. The
half-wave potential (E1/2) for the DA/DAQ redox couple
calculated as E1/20+0.153 V (vs. Ag/AgCl) is slightly more
anodic compared to that obtained on modified carbon paste
microelectrode (E1/20+0.122 V vs. Ag/AgCl) [26]. It is, how-
ever, interesting that both oxidation and reduction peaks tend
to shift to slightly more anodic and cathodic potentials,
respectively, with the increase of either the concentration or
the scan rate. Consequently, the anodic and cathodic peak
potential separation,ΔEp0Ep

ox−Ep
red progressively increases

with the rise of either the concentration of the electro-active
compound or the scan rate. Since the slow electron transfer
kinetic is concentration independent while the effect of the
uncompensated resistance depends on concentration, the find-
ings indicate that the enhanced ΔEp values obtained at high
concentrations can be attributed to the resistance which
remains uncompensated [27]. Anyhow, even at low concen-
trations and scan rates, where the uncompensated resistance
effect is negligible, the ΔEp seems to be greater than the
expected theoretical ΔEp value of 2.3RT/nF for n02 (or
0.059/nV at 25 °C) [28] indicating that the electro-oxidation
of DA toDAQ is quasi-reversible. The value ofΔEp00.064V
determined for c00.035 mM at v00.05 Vs−1 leads to the
electron transfer rate constant (ks) value of ks035.3×
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10−3 cm s−1. It is interesting that the ks value of 2.21×
10−3 cm s−1 obtained for DA/DAQ on modified carbon nano-
tube paste electrode [29] appears to be about 15 times smaller
than that obtained on our novel film. Furthermore, the rate
constant of ks00.54×10

−3 cm s−1 for DA/DAQ reported for
glassy carbon electrode modified with MWCNT and cobalt
phthalocyanine [30] seems to be even smaller compared to the
electron transfer rate constant obtained on our novel electrode
(ks035.3×10

−3 cm s−1). The findings demonstrate that on
MWCNT-based electrode, the oxidation of DA tends to be
faster.

The electrochemical response of MWCNT-ACN elec-
trode presented graphically as the variation of either the
oxidation or reduction peak current with the concentration
of DA was linear in the investigated concentration range of
0.035–0.435 mM (Fig. 3a) (the correlation coefficient value
was 0.9998). The last finding is very interesting since the
current–concentration curve may be used for the analytical

determination of DA in unknown samples. We have to
mention, however, that as the concentration of DA increases
further, the increase in the oxidation current slows down.
This phenomenon can be explained by the saturation of DA
in the film, something which can be observed also in the
SEM images. Namely, as it can be clearly seen in the SEM
micrographs shown in Fig. 1, a deposition of DA takes place
on the surface of the electrodes. Thus, the results obtained in
the present work reveal that the MWCNT-ACN film has a
relatively high sensitivity to DA if its concentration is below
the saturation concentration in the film. It is very interesting
that proportional variation of the oxidation current with the
concentration of DAwas also observed in the concentration
range of 0.1–0.4 mM by other researchers [31]. Consequently,
the linear concentration–current calibration curve obtained in
the present work allowed the determination of the electrode's
detection limit and sensitivity towards DA/DAQ. The limit of
detection of MWCNT-ACN for DA/DAQ was determined as

Fig. 1 SEM images of the used
MWCNT-ACN (a, b) and
MWCNT-BZ (c, d) films.
The SEM micrographs were
achieved with an accelerating
voltage of 20 kV and magnifi-
cation factors of ×6,000
(a), ×4,000 (b), ×1,000 (c),
and ×2,000 (d)
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0.03 μM at v00.05 Vs−1. Furthermore, considering that the
active surface area of MWCNT-ACN is 3.09 cm2, from the
slope of the concentration–current calibration curve shown in
Fig. 3a, the electrode's sensitivity of 0.65 AM−1 cm−2 was
determined. To our knowledge, only three previously pub-
lished studies report such small electrode's detection limits for
DA. Namely, Wang et al. [32] reported that the detection limit
for DA of an electrode consists of glassy carbon and LaFeO3

nanoparticles is 0.03 μM, which is similar with that obtained
on our novel MWCNT-ACN film. In addition, Ardakani et al.
[33] reported for carbon paste electrode modified with N,N′
(2,3-dihydroxybenzylidene)-1,4-phenylenediamine and TiO2

nanoparticles a detection limit of 0.0314 μM. Furthermore, a
slightly smaller detection limit (0.01 μM), compared to that
obtained on MWCNT-ACN (0.03 μM), was reported by Xu
et al. [34] for glassy carbon electrode modified with electro-
polymerized bromothymol blue. However, it would be very
interesting to compare the detection ability of our novel
MWCNT-based electrode with that of other electrodes
reported in the literature. It was observed that the novel
MWCNT-ACN film fabricated in the present work exhibits
generally significantly greater detection ability towards the
redox couple DA/DAQ compared to other novel electrodes
reported in the literature. Specifically, Kurniawan et al. [35]
reported that the detection limit for DA of an electrode con-
sisting of gold nanoparticles is about 4.0 μM, which is greatly
poorer compared to the detection limit obtained for MWCNT-
ACN electrode. Furthermore, Chandrashekar et al. [36] deter-
mined a detection limit of about 10 μM for DA on carbon
paste electrode modified with poly-ethylene glycol, which is
significantly poorer compared to the detection limit observed
on our MWCNT-ACN film. In addition, Min and Yoo [37]
reported that the detection ability of single-walled carbon
nanotube (SWCNT) film modified with poly-pyrrole towards
the DA/DAQ redox system was 5 μM, which is also consid-
erably poorer compared to that determined on our novel
MWCNT-ACN electrode. Also interesting is that these
authors reported for the modified SWCNT-based film a sen-
sitivity of 0.467 AM−1 cm−2 which is rather smaller compared
to the sensitivity obtained for MWCNT-ACN (0.65 A
M−1 cm−2). It is also remarkable that MWCNT electrode
modified with poly-aniline exhibits the detection limit of
38 μM towards DA/DAQ which is also significantly poorer
compared to that of our novel MWCNT-based films [38]. A
detailed comparison of the detection limits and sensitivities of
the novel MWCNT-based electrodes fabricated in the present
work with a large number of other modified or unmodified
electrodes reported in literature is shown in Table 2. From this

Table 1 CVand EIS parameters obtained for the DA/DAQ redox couple
on novel MWCNT-based films in phosphate buffer solutions (pH07.0)

Electrochemical parameter MWCNT-ACN MWCNT-BZ

Ep
ox/V a +0.185 +0.214

Ep
red/V a +0.121 +0.129

E1/2/V
a, b +0.153 +0.172

ΔEp/V 0.064 0.085

ip
ox/ip

red c 1.02 1.05

D/10−6 cm2 s−1 3.385 3.320

ks/10
−3 cm2 s−1 35.3 e/34.2 f 6.55 e/7.31 f

Cdl/10
−3 F d 3.59 1.36

Rct/Ω
d 18 40

Cad/10
−12 F d 16 38

Rad/Ω
d 22 51

σ/Ω s−1/2 d, g 111 141

Detection limit/10−6 M 0.03 0.30

Sensitivity/AM−1 cm−2 0.65 0.22

a All potentials are reported versus Ag/AgCl (KCl sat.) reference
electrode
b The E1/2 values were determined as the average values of Ep

ox and
Ep

red [46]
c Anodic (ip

ox ) and cathodic (ip
red ) peak currents ratios

d The EIS parameters were determined by means of the equivalent
electrical circuit (Rs+(Cf/Rf)+ (Cdl/(Rct+ (Cad/Rad)))+Zw) (Fig. 5)
(Thales software, version 4.15)
e The ks values were determined from recorded CVs
f The ks values were determined from recorded EIS spectra
g The Warburg parameter σ is connected with the Warburg impedance
ZW according to the relation: Zw0σ/(iω)

1/2 , where ω is the angular
frequency [47]
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Table 2 Detection limits and sensitivities of the novel MWCNT-based films and other electrodes reported in the literature towards DA/DAQ redox
couple, determined by means of either CV, amperometry (AMP), DPV, or linear sweep voltammetry (LSV)

Electrode material Method Detection limit (10−6 M) Sensitivity(A M−1 cm−2) Reference

MWCNT-ACNa CV 0.03 0.65 This work

MWCNT-BZa CV 0.30 0.22 This work

Aub CV 4.0 10 Kurniawan et al. [35]

CPc CV 10 Chandrashekar et al. [36]

SWCNTd AMP 5.0 0.467 Min and Yoo [37]

CFe CV 0.20 Hafizi et al. [48]

Auf DPV 0.30 Behpour et al. [49]

GCg CV 0.08 Sun et al. [50]

PTh CV 0.40 Gao et al. [51]

Pti CV 20 Doyle et al. [52]

GCj DPV 0.03 Ensafi et al. [53]

CPk CV 0.237 Mahanthesha et al. [54]

MWCNTl AMP 38 Sabzi et al. [38]

Ptm CV 0.08 Jo et al. [55]

GCn DPV 0.10 1.21 Huong et al. [56]

CPo CV 0.45 Oni et al. [26]

CNTp CV 0.087 Ardakani et al. [29]

CFq DPV 0.07 Hocevar et al. [57]

GCr DPV 0.20 Kamyabi et al. [58]

GCs DPV 0.256 Moraes et al. [30]

Ptt LSV 0.086/0.061 Atta et al. [41]

GCu CV 0.03 Wang et al. [32]

CPv CV 0.70 Sun et al. [59]

GCw DPV 0.01 Xu et al. [34]

CFx CV 0.1 Ates et al. [59]

CPy DPV 0.0314 Ardakani et al. [33]

a Values obtained in the present work for MWCNT-based films
b Electrode consists of gold nanoparticles [35]
c Carbon paste electrode modified with poly-(ethylene glycol) [36]
d Single-walled carbon nanotubes modified with poly-(pyrrole) [37]
e Carbon fiber microelectrode [60]
f Gold electrode modified with 2-aminothiophenol and furfural aldehyde [48]
g Activated roughened glassy carbon electrode [49]
h Deactivated poly-thiophene film [50]
i Platinum electrode modified with poly-(pyrrole) [51]
j Glassy carbon electrode modified with poly-(sulfonazo III) [52]
k Carbon paste electrode modified with alizarin [53]
l MWCNT film modified with poly-(aniline) [38]
m Platinum electrode modified with single-walled carbon nanotubes and phytic acid [54]
n Glassy carbon electrode modified with poly-(3-methylthiophene) [55]
o Carbon paste microelectrode modified with iron(II)tetrasulfophthalocyanine [26]
p Carbon nanotube paste electrode modified with 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone [29]
q Single carbon fiber microelectrode modified with MWCNT and Nafion [56]
r Glassy carbon electrode modified withMWCNTand bis(pyterpy)iron(II) thiocyanate complex (where pyterpy is 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine) [57]
s Glassy carbon electrode modified with MWCNT and cobalt phthalocyanine [30]
t Pt electrode modified with poly-(3,4-ethylene dioxythiophene) [41]
u Glassy carbon electrode modified with LaFeO3 nanoparticles [32]
v Carbon paste electrode modified with N-butylpyridinium hexafluorophosphate [58]
w Glassy carbon electrode modified with poly-(bromothymol blue) [34]
x Carbon fiber microelectrode modified with poly-(carbazole) [59]
y Carbon paste electrode modified with N,N′(2,3-dihydroxybenzylidene)-1,4-phenylenediamine and TiO2 nanoparticles [33]
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comparison, it can be clearly seem that, without any doubt, the
quality of the MWCNT-based electrode produced in the pres-
ent work is very good.

It is well known that the EIS technique is a useful tool for
studying the interface properties of surface-modified elec-
trodes [39, 40]. Therefore, the EIS method was used to
investigate the nature of DA interaction at the surface of
MWCNT-based electrode. The EIS spectra were recorded at
AC frequency varying between 0.1 Hz and 100 kHZ with an
applied potential in the region corresponding to the half-
wave potential of the redox couple DA/DAQ. The effect of
the concentration of the electro-active compound on the
kinetics of the electron transfer process has been actually
investigated. It is remarkable that no significant changes
were observed in recorded EIS spectra with the change of
DA concentration. A representative EIS spectrum recorded
on MWCNT-ACN film for the most concentrated investi-
gated DA solution (c00.435 mM) is displayed in Fig. 4a. In
the EIS spectrum shown in Fig. 4a, the complex impedance
is presented as a sum of the real (Zre) and the imaginary
(Zimag) components (as Nyquist plot). The EIS spectrum
consists of a part of a semicircle in high and moderate
frequency range and an anomalous straight line at a lower
frequency range. For the simulation of the recorded EIS
spectra, the equivalent electrical circuit (Rs+(Cf/Rf)+(Cdl/
(Rct+(Cad/Rad)))+Zw) was used (Fig. 5). The extracted EIS
parameters are included in Table 1. The elements of the
applied electrical circuit are explained as follows: Rs is the
uncompensated Ohmic resistance of the cell; Rct, Rf, and Rad

are the charge-transfer resistance, the resistance associated
with the surface of the working electrode and the adsorption
resistance, respectively; Cdl, Cf, and Cad are the double-layer
capacitance, the electrode surface capacitance, and the
adsorption capacitance, respectively, and Zw is the Warburg
impedance. The obtained mean percent impedance and
mean phase angle errors obtained from simulation were less
than 0.4% and 0.1, respectively.

The charge transfer resistance (Rct≈18 Ω) determined for
the redox couple DA/DAQ was found to be nearly invariant
within experimental error in all investigated concentrations.

It is very interesting that an electrode consists of Pt modified
with poly(3,4-ethylene dioxythiophene), Nyquist plots with
the same shape were obtained for DA/DAQ [41]. It is as
well very interesting that on this particular electrode, an
extremely higher charge transfer resistance (Rct≈278 Ω)
was determined compared to that obtained on our novel
MWCNT-based electrode (Rct≈18 Ω). The findings show
that our novel MWCNT-based electrode provides fewer
barriers for the electron transfer process confirming thus
that the quality of the electrode is very good. It is very
interesting to mention that from the Warburg impedance
Zw, the corresponding Warburg coefficient (σ) for DA/
DAQ on MWCNT-based electrode was determined (σ0
111 Ωs−1/2), a parameter which is strongly dependent on
the diffusion ability of the redox species [42]. Thus, from
the obtained σ value, the diffusion coefficient of D03.385×
10−6 cm2 s−1 was determined, which is in absolute agree-
ment within experimental error to the D values of D03.4×
10−6 cm2 s−1 [11] and D03.5×10−6 cm2 s−1 [43] reported in
the literature. Also interesting is that the electron transfer
rate value of ks034.2×10

-3 cm s-1 determined from the
obtained charge transfer resistance value of Rct≈18 Ω agrees
reasonably with the ks value of ks035.3×10

-3 cm s-1,
obtained by means of the CV technique [44].

MWCNT-BZ-based film

Representative CVs of DA/DAQ recorded on MWCNT-BZ
at the scan rate of v00.05 V s-1 showing the effect of the
change of concentration, are shown in Fig. 2b. The extracted
CV parameters are included in Table 1. Some slight differ-
ences in the potentials and the kinetic parameters were
observed for DA/DAQ on MWCNT-BZ. Specifically, the
CVs recorded on this particular electrode exhibit oxidation
and reduction waves at Ep

ox≈+0.214 Vand Ep
red≈+0.129 V

(vs. Ag/AgCl), respectively, and thus, the half-wave poten-
tial of DA/DAQ determined as E1/20+0.172 V (vs. Ag/
AgCl) is slightly more anodic compared to E1/2 obtained
on MWCNT-ACN (E1/20+0.153 V vs. Ag/AgCl). Further-
more, the peak potential separation of ΔEp00.085 V,
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determined for DA/DAQ on MWCNT-BZ (c00.035 mM,
v00.05 Vs−1), seems to be greater than the value of ΔEp0
0.064 V, obtained on MWCNT-ACN at the same concen-
tration and scan rate. Accordingly, the charge transfer pro-
cess occurring on MWCNT-BZ (ks06.55×10

−3 cm s−1)
appears to be about five times slower compared to that
taking place on MWCNT-ACN (ks035.3×10

−3 cm s−1).
The findings can be explained through the existence of iron
nanoparticles incorporated into the structure of the nano-
tubes, which interrupt the electro-oxidation of DA on this
particular electrode. Specifically, it was observed that the
recorded CVs display at low concentrations and low scan
rates an additional oxidation peak at about Ep

ox≈+0.06 V
(vs. Ag/AgCl), which can be ascribed to the iron nanopar-
ticles. As was already reported in a previous published
work, the carbon nanotubes grown with the decomposition
of BZ are highly iron-doped [45]. Consequently, it can be
concluded that the detection ability and the sensitivity of the
MWCNT-BZ electrode weaken due to an increase of the
background “noise.” As it can be seen in Fig. 3b, the varia-
tion of the oxidation peak current with the concentration of
the electro-active compound seems to be linear in the inves-
tigated concentration range of 0.035–0.435 mM. Conse-
quently, from the concentration–current curve, the
detection limit of 0.30 μM was estimated for MWCNT-BZ
at v00.05 Vs−1. The detection limit obtained on MWCNT-
BZ appears to be quite poorer compared to that determined

on MWCNT-ACN (0.03 μM) at the same scan rate. Fur-
thermore, considering that the active surface area of the
MWCNT-BZ film is 1.57 cm2, the electrode's sensitivity
of 0.22 AM−1 cm−2 was calculated, which is slightly less
than that determined for MWCNT-ACN (0.65 AM−1 cm−2).
In order to investigate further the detection ability of
MWCNT-BZ film, DPVs were also recorded on this partic-
ular electrode in extremely low concentrations (in the range
from 0.17 to 3.33 μM). The recorded DPVs are shown in
Fig. 6a. It can be obviously observed in Fig. 6a that for
concentrations below 0.30 μM, no oxidation current can be
seen in recorded DPVs. In the investigated concentration
range (0.33–3.0 μM), the variation of the oxidation current
with the concentration of DA is linear (Fig. 6b) and leads to
the detection limit of 0.30 μM which is in absolute agree-
ment with that determined from the CV studies. It is very
interesting to remark at this point that even if the detection
ability of MWCNT-BZ is poorer than that of MWCNT-
ACN, it appears to be much better compared to that of other
novel electrodes reported in the literature (Table 2).

Figure 4b displays a representative Nyquist plot recorded
for DA (c00.435 mM) on MWCNT-BZ. The extracted EIS
parameters are included in Table 1. The EIS spectra consist
of two semicircles, namely a whole semicircle and a second
semicircle with compressed shape in the high and interme-
diate frequency range, respectively, and an anomalous line,
which appears in the lower frequency range. The greater
value of charge transfer resistance (Rct≈40 Ω) was deter-
mined for DA/DAQ on MWCNT-BZ indicating the bigger
barrier for electron transfer process and therefore the slower
kinetics which characterizes this particular electrode. This
observation supports the CV results. From the determined
Rct value of Rct≈40 Ω, the heterogeneous electron transfer
rate constant of ks07.31×10

−3 cm s−1 was estimated, which
agrees reasonably within experimental error with the value
of ks06.55×10

−3 cm s−1 obtained from the recorded CVs.
Furthermore, from the Warburg coefficient of σ0141 Ωs−1/2

estimated for DA/DAQ on MWCNT-BZ, the diffusion
coefficient of D03.32×10−6 cm2 s−1 was determined for

Fig. 5 Equivalent electrical circuit (Rs+(Cf/Rf)+(Cdl/(Rct+(Cad/Rad)))
+Zw) used for fitting the EIS spectra for DA/MWCNT system (Thales
software, version 4.15)
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DA, which agrees very well with the value of D03.385×
10−6 cm2 s−1 determined on MWCNT-ACN.

Conclusions

The novel MWCNT-ACN and MWCNT-BZ films were
fabricated by means of the CVD technique with decompo-
sition of ACN and BZ, respectively, and used as working
electrodes for the electrochemical oxidation of DA in buffer
phosphate solutions (pH07.0). Both MWCNT-based films
exhibit quasi-reversible response towards DA/DAQ with
some slight kinetic differences. Namely, the charge transfer
process occurring on MWCNT-BZ (ks06.55×10

−3 cm s−1)
is about five times slower than that taking place on
MWCNT-ACN (ks035.3×10

−3 cm s−1). Furthermore, the
detection ability (0.30 μM) and electrode's sensitivity
(0.22 AM−1 cm−2) estimated for MWCNT-BZ towards
DA/DAQ are smaller compared to those obtained for
MWCNT-ACN (0.03 μM, 0.65 AM−1 cm−2). The weaker
detection ability of MWCNT-BZ can be attributed to the
iron nanoparticles incorporated into the structure of the
nanotubes. It is, nevertheless, very interesting that the novel
MWCNT-based films fabricated in the present work exhibit
higher sensitivity and lower detection limits compared to the
large number of other electrodes reported in the literature.
The last observation indicates the importance of using car-
bon nanotubes as materials for constructing bio-sensing
electrodes.
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